STAT 2593 Lecture 030 - The One Sample t Test

Dylan Spicker

Learning Objectives

1. Understand how we test population means in **large sample** non-normally distributed populations or normally distributed populations with unknown variance.

Suppose we have a sample from a normal population, with unknown variance and unknown mean.

- Suppose we have a sample from a normal population, with unknown variance and unknown mean.
- We wish to test: $H_0: \mu = \mu_0$ versus the alternative, $H_1: \mu \neq \mu_0$.

- Suppose we have a sample from a normal population, with unknown variance and unknown mean.
- ▶ We wish to test: $H_0: \mu = \mu_0$ versus the alternative,
 - $H_1: \mu \neq \mu_0.$
 - May also consider $H_0: \mu \leq \mu_0$ versus $H_1: \mu > \mu_0$.

- Suppose we have a sample from a normal population, with unknown variance and unknown mean.
- We wish to test: $H_0: \mu = \mu_0$ versus the alternative,
 - $H_1: \mu \neq \mu_0.$
 - May also consider $H_0: \mu \leq \mu_0$ versus $H_1: \mu > \mu_0$.
 - May also consider $H_0: \mu \ge \mu_0$ versus $H_1: \mu < \mu_0$.

- Suppose we have a sample from a normal population, with unknown variance and unknown mean.
- ▶ We wish to test: $H_0: \mu = \mu_0$ versus the alternative,
 - $H_1: \mu \neq \mu_0.$
 - May also consider $H_0: \mu \leq \mu_0$ versus $H_1: \mu > \mu_0$.
 - May also consider $H_0: \mu \ge \mu_0$ versus $H_1: \mu < \mu_0$.
- ▶ We have see the sampling distribution for

$$T = rac{\overline{X} - \mu_0}{s/\sqrt{n}}$$

- Suppose we have a sample from a normal population, with unknown variance and unknown mean.
- ▶ We wish to test: $H_0: \mu = \mu_0$ versus the alternative,
 - $H_1: \mu \neq \mu_0.$
 - May also consider $H_0: \mu \leq \mu_0$ versus $H_1: \mu > \mu_0$.
 - May also consider $H_0: \mu \ge \mu_0$ versus $H_1: \mu < \mu_0$.
- ▶ We have see the sampling distribution for

$$T = \frac{\overline{X} - \mu_0}{s/\sqrt{n}}$$

• If μ_0 is the correct mean, this will be t_{n-1} .

- Suppose we have a sample from a normal population, with unknown variance and unknown mean.
- We wish to test: $H_0: \mu = \mu_0$ versus the alternative,
 - $H_1: \mu \neq \mu_0.$
 - May also consider $H_0: \mu \leq \mu_0$ versus $H_1: \mu > \mu_0$.
 - May also consider $H_0: \mu \ge \mu_0$ versus $H_1: \mu < \mu_0$.
- ▶ We have see the sampling distribution for

$$T=rac{\overline{X}-\mu_0}{s/\sqrt{n}}.$$

• If μ_0 is the correct mean, this will be t_{n-1} .

Finding the p-value is equivalent to the N(0,1) case, substituting the normal distribution for a t distribution.

Calculating p-values

Calculating p-values

Calculating p-values

▶ If we observe *t*, we want to compute $P(|T| \ge |t|)$.

- ▶ If we observe t, we want to compute $P(|T| \ge |t|)$.
- For symmetric distributions this is given by $P(T \ge |t|) + P(T \le -|t|).$

- ▶ If we observe *t*, we want to compute $P(|T| \ge |t|)$.
- For symmetric distributions this is given by $P(T \ge |t|) + P(T \le -|t|).$
- If our null hypothesis is one-sided then one of the two tail regions does *not* provide evidence against H₀.

- ▶ If we observe *t*, we want to compute $P(|T| \ge |t|)$.
- For symmetric distributions this is given by $P(T \ge |t|) + P(T \le -|t|).$
- If our null hypothesis is one-sided then one of the two tail regions does *not* provide evidence against H₀.
 - If $H_0: \mu \ge \mu_0$, then only consider $P(T \le t)$.

- ▶ If we observe *t*, we want to compute $P(|T| \ge |t|)$.
- For symmetric distributions this is given by $P(T \ge |t|) + P(T \le -|t|).$
- If our null hypothesis is one-sided then one of the two tail regions does *not* provide evidence against H₀.
 - If $H_0: \mu \ge \mu_0$, then only consider $P(T \le t)$.
 - If $H_0: \mu \leq \mu_0$, then only consider $P(T \geq t)$.

- ▶ If we observe *t*, we want to compute $P(|T| \ge |t|)$.
- For symmetric distributions this is given by $P(T \ge |t|) + P(T \le -|t|).$
- If our null hypothesis is one-sided then one of the two tail regions does *not* provide evidence against H₀.
 - If $H_0: \mu \ge \mu_0$, then only consider $P(T \le t)$.
 - If $H_0: \mu \leq \mu_0$, then only consider $P(T \geq t)$.
 - Note here we do not take the absolute value.

Rejection Regions for Hypothesis Tests - Critical Values

Two Sided Hypothesis Test – Rejection Region

If the sampling distribution is normally distributed, can use a t_{n-1} to run hypothesis tests.

The rejection region depends on the alternative being considered.